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Abstract

The new operational prototype of Mercator (french Global Ocean Data Assimilation Experiment contribution) is composed of
a North Atlantic primitive equation ocean model OPA (Ocean Parallel Algorithm between 20°S and 70°N, [Madec, G., P.
Delecluse, M. Imbard and C. Lévy (1998). OPA8.1 ocean general circulation model reference manuel. Notes du pôle de
modélisation IPSL. n°11: 91p]) and of a multivariate and multidata assimilation scheme [De Mey, P. and M. Benkiran (2002). “A
multivariate reduced-order optimal interpolation method and its application in Mediterranean basin-scale circulation.” Ocean
Forecasting : Conceptual basis and application, Pinardi, N., Springer Verlag.] This system has already given some significant
improvements from previous Mercator configurations (M. Benkiran, personal communication). However some biases on ocean
state still remain in the tropics where the reduced-order optimal interpolation scheme is suspected to be ill-parameted in the
model forecast error. Indeed the guess error covariance matrix is decomposed into an error variance value and a spatio-temporal
correlation function which are assumed to have some “good” properties (spatial homogeneity of the correlation function,
constant ratio between signal and error variance). This study shows how we can use ensemble methods to validate these
assumptions. We can see that the correlation function can reach negative values locally, mostly in regions of high variability
contradictory with the homogeneous hypothesis. The reduced space used in the operational configuration is based on the signal
seasonal Empirical Orthogonal Functions (EOFs). An empirical relationship between signal and error variance has been set and
the correlation function is the same on every dimension of the reduced space. By projection of the estimated guess error variance
onto the reduced space, we find a repartition of this quantity quite different to what was set in the system. The error statistics is
found to be inhomogeneous compared to hypothesis made in the assimilation scheme. These two new parameters tested
separately in the assimilation scheme gives significant improvements of the forecast and analysis results. This is particularly
obvious in the tropics. But relationship between signal and error statistics (as assumed in the optimal interpolation) is found to be
complex.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Mercator, the french contribution to GODAE
(Global Ocean Data Assimilation Experiment), is
now providing routine forecasts of the ocean state.
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The final goal of this project is to supply high
resolution global ocean model outputs. Since 2001,
different operational systems have been developed
towards the ultimate configuration. It has begun with a
low resolution model of the Northern Atlantic (OPA 1/
3 degree, Madec et al., 1998) combined with reduced
order optimal interpolation scheme (De Mey and
Benkiran, 2002) assimilating along track satellite Sea
Level Anomaly (SLA). The second phase of the
prototype development was based on an increase of
the model resolution and an extension of the domain to
Mediterranean Sea. The last stage was to implement a
fully multivariate and multidata assimilation scheme,
first in the low resolution, then in the high resolution
operational system. The third prototype of Mercator is
now available and provides 7- and 14-day forecast of
the North Atlantic Ocean, assimilating satellite and in-
situ data. The new assimilation scheme, described in
Benkiran et al. shows how the use of in situ data
improves both the assimilation statistics and the ocean
state forecast. The Mercator configuration studied
hereafter extends over the Atlantic Ocean from 20°S
to 70°N. The horizontal resolution is 1/3 degree and
there are 43 levels on the vertical. The reduced order
optimal interpolation scheme used is SOFA (System
for Ocean Forecasting and Analysis) developed by P.
De Mey (De Mey and Benkiran, 2002). It is based on
the Kalman filter (Kalman, 1960) equations using
Optimal Interpolation (OI) formulation. The assimila-
tion is sequential and provided every week. This
scheme is a fully multivariate and multidata configu-
ration. It computes Ψ, T, S analysis increments (where
Ψ is the barotropic part of stream function, T is
temperature and S is salinity) in a reduced space by
combination of model state with satellite along track
SLA, T and S in situ profiles and Sea Surface
Temperature (SST) from Reynolds data base.

Nevertheless, this method is based on a number of
statistical hypotheses related to forecast, system or
observational errors. A special effort has to be made to
solve the problem of the forecast error covariance matrix
representation. This matrix, called B, is usually needed
in most of the assimilation techniques to compute the
correction of the forecast state.

Many parameterizations have been developed to
express the forecast error statistics. In linear system, B
is propagated by the model, as in the classical Kalman
filter equations (Kalman, 1960). But for non-linear
system, it leads to some numerical problems linked to
closure of the time propagation of the density
probability function of the error (Evensen, 1994). The
optimal interpolation scheme is one solution to repre-
sent B. It has been useful in many ocean configurations
(Gavart and De Mey, 1997; Gavart et al., 1999; Maes
et al., 1999). Therefore, we will first focus on the guess
error covariance matrix as formulated in the multivar-
iate scheme. This will draw attention to the two major
hypotheses made on forecast error statistics and how
they can be tested by ensemble methods. We propose a
better parameterization of the guess error covariance
matrix that can dramatically improve the model results.
Ensemble experiments are used in meteorology to eval-
uate model predictability (Murphy, 1988; Mureau et al.,
1993; Toth and Kalnay, 1993). These techniques are
used in this paper to answer to a number of questions
concerning the error statistics (Section 3). They allowed
computation and test of a new correlation function and
error variance on the assimilation and forecast results, as
presented in Sections 4 and 5 of this document.

2. Forecast error in the multivariate assimilation
scheme

A general overview of the assimilation scheme can
be found in Benkiran et al. In the present paper, we
only recall the parameterization of the forecast error
covariance matrix used in the optimal interpolation
scheme. The analysis Xa is obtained by correction of
the forecast state Xf using misfits between Xf and
observations yo. Observation data sets are temperature
and salinity profiles, SLA, daily Sea Surface Temper-
ature (SST) from Reynolds at the analysis date. The
correction is computed in a reduced space via the S
operator. The reduced space is constructed with the ten
first (Ψ, T, S) EOFs. So S contains the ten first
eigenvectors of the (Ψ, T, S) covariance matrix, stored
by decreasing eigenvalues. Each of these modes stands
for a part of the signal variance, equal to the
corresponding eigenvalue. Ten are enough here to
explain ninety percent of the signal variance. Then,
using the Kalman equations we can write:

X a ¼ X f þ Kðyo−HX f Þ ð1Þ

K ¼ S−IKr and Kr ¼ SK ð2Þ

Kr ¼ BrH
T
r ðHrBrH

T
r þ RÞ−1 ð3Þ

The low case r is for matrices in the reduced space,
H for the observational operator with Hr =HS

T. K is the
Kalman gain and R is the observation error covariance
matrix. Br =S

TBS is the reduced guess error covariance
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matrix, which is expressed in the optimal interpolation
formulation by:

Br ¼ D1=2
r CD1=2

r ð4Þ

where Dr is the guess error variance and C the
correlation function. This last formulation means that
we can decompose the guess error covariance into its
variance part (the amplitude of the covariance) and its
spatial and temporal structure C in every dimension of
the signal subspace (EOFs). We will now discuss these
two parameters.

2.1. The correlation function C

In each of the Mercator operational configuration, C
can be described by some spatial and temporal
correlation length scales. It's an exponential space and
time decreasing function, with positive amplitude
depending on the distance. The correlation is nearly
equal to 0.5 for distances equal to the spatial correlation
length Rx and Ry (respectively zonal and meridional
radius), and reaches zero by positive value for larger
distances. Rx, Ry and also Rt (time correlation radius)
are estimated from analysis increments of a previous
simulation (in this simulation, analysis is performed
using length scales from SLA altimetry to parameterized
C). Even if resulting radii are space-varying, the
structure of C is kept unchanged over the whole domain.
Notice that same radii are used on every dimension of
the reduce space (on the ten modes).

First, considering the projection of the B matrix
on the signal EOFs (leading to Br), we assume there that
the guess error can be estimated on the same base as
the signal. Now, with this C function, we have made the
hypothesis that the spatial and temporal structures of the
error are similar on every dimension of the signal
reduced space. We know that most of the large scale can
be found on mode 1 (barotropic mode), whereas the
mesoscale patterns are typically represented by higher
order modes. Moreover it has shown a strong correlation
between error structures and dynamics (Moore, 1999;
Kuragano and Kamachi, 2000). So to which extent can
we make this assumption of a unique C function and set
of correlation length scale over each reduce space
dimension? This is the first question that we will try to
solve in next sections.

2.2. The guess error variance D

In our context, Dr is strongly correlated to the
definition of S. In fact, Dr depends both on the mode
and on the grid point. EOFs are computed seasonally.
Four sets of empirical modes (one every 3 months) are
then available to characterize the (Ψ, T, S) ocean state
seasonal variation. Let us call V(m) the signal variance
explained by the mode m (mth eigenvalue). The guess
error varianceDr on each mode is defined as a fraction of
the mode variance:

D1=2
r ðmÞ ¼ 0:2V 1=2ðmÞ ð5Þ

Value of 0.2 has been chosen empirically. In that case
we still assume the connection between signal and error
standard deviation (hereafter SD): we impose the same
EOFs decomposition, spatial repartition and the same
seasonal variation. We know that dynamics and error
growth are strongly correlated (Etienne and Dom-
browsky, 2003). Therefore, the second question to rise
is, to what extent will the parameterization of the guess
error variance of Eq. (5) be accurate enough to make the
assimilation efficient?

2.3. Methodology

To estimate guess error covariance, we choose the
ensemble methods, as in Etienne and Dombrowsky
(2003). We have tried to estimate the initial condition
error covariance (therefore the analysis error covariance
while analysis of cycle i is the initial condition for cycle
i+1, see Eq. (1)). Consider a given model M with initial
state Xa(t0) and associated initial error statistics, for
example error covariance Cov(t0). This statistic can be
computed by comparison of Xa(t0) with the true state
Xt(t0):

Covðt0Þ ¼
P
½X aðt0Þ−X tðt0Þ�T ½X aðt0Þ−X tðt0Þ�

¼
P
eðt0ÞT eðt0Þ

ð6Þ

These matrix is then propagated by the model:

CovðtnÞ ¼
P
½X f ðtnÞ−X tðtnÞ�T ½X f ðtnÞ−X tðtnÞ�

¼
P
½Mðt0; tnÞX aðt0Þ−X tðtnÞ�T ½Mðt0; tnÞX aðt0Þ−X tðtnÞ�

ð7Þ

The overbare stands for the statistical mean. This last
formulation shows that we can compute error statistics
at every model time step. This supposes we can access
the true state and this is obviously not realistic. First
because this imply a huge quantity of observations
(proportional to the model resolution and coverage) and
second because the measurements are suppose to be
perfect (no observational error). Ensemble methods are
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an efficient way to estimate statistics. The true state Xt is
replace by the most probable state X̄ , given an initial
error distribution. This means that we can find a cloud of
N states Xp(t0) around Xa(t0) such as

Xpðt0Þ ¼ X aðt0Þ þ epðt0Þ; pa½1;N � ð8Þ

With E½eðt0Þ� ¼ 0 and
P
½eðt0ÞT eðt0Þ� ¼ Covðt0Þ;

e ¼ fepg; pa½1;N �

Then, from Eq. (7), we can write:

CovðtnÞ ¼
P

½X f ðtnÞ−
P
X f ðtnÞ�T ½X f ðtnÞ−

P
X f ðtnÞ� ð9Þ

In practical, we need information about the initial
statistics we try to estimate, such as variance range,
spatial and temporal covariance patterns. Evensen
(1994) proposes a method to compute such an ensemble
of perturbations εp, based on inverse Fourier transform
(see appendix of Evensen, 1994).

Nevertheless we need a first guess for our initial
ensemble statistics. One direct available estimation is
the statistics on the assimilation increment from the
univariate MERCATOR scheme, assimilating only SLA
and using the same OPA model configuration. The
Fig. 1. SLA increment standard deviation (in m) from the univariate Me
assimilation scheme is based on the lifting–lowering
method (Cooper and Haines, 1996) to propagate the
information on the full model state (convert SLA
increment into T,S,U,V increments). Nonetheless,
these statistics contain information about the guess
error (distance between model state and observations),
but also errors due to the assimilation scheme (possible
bad estimated parameters). Using the method described
in Evensen (1994), we compute an ensemble of
perturbations similar to SLA increments. Each of them
is propagated on the full model state to obtain {εp} as
fully described in Etienne and Dombrowsky (2003). We
found that 50 members were enough to correctly set the
initial statistics written in Eq. (8).

Three experiments are thus conducted over different
periods. Ensemble are integrated over 28 days, even if
the assimilation window takes 7 days long to study error
doubling time and to allow dissipation of possible noise
introduced by the small scales perturbation. Periods
chosen in the following are 1995 winter and summer
and 1996 winter (hereafter W95, S95 and W96
respectively) as in Etienne and Dombrowsky (2003) to
eventually find some similarities in the two configura-
tions. These periods allow us to crudely point out the
possible interannual and seasonal variation of the error
growth. Fig. 1 shows the SLA SD (from SLA increments
rcator system over year 1995 (left plot) and year 1996 (right plot).
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of the univariate scheme) used to estimate initial ensem-
ble spread (ensemble SD) for year 1995 and 1996 corres-
ponding to diagonal components of Cov(t0) (Eq. (9)).

3. Estimation of the error statistics

A result that could be expected from the 28-day
ensemble integration is the strong correlation between
error growth (spread or collapse of the ensemble) and
the local dynamics. Even if the major patterns are
similar, the three experiments lead to different 7 days
error variances (time period of the assimilation win-
dow), depending on the period of integration. The
example of the barotropic height is presented in Fig. 2.
Whatever the experiments, we can identify strong error
variance in:

- the southern part of the Gulf Stream and its
extension;

- the East Greenland Current and the Labrador Sea;
- the tropical belt, except at the equator.

The equator is a particular case, because initially no
error variance on barotropic height has been generated.
This is mostly due to the lifting–lowering method we
used to propagate the perturbation on the full state. The
barotropic increment is set to zero at the equator. That is
why there is no initial error variance on this variable and
it is obvious that this error did not propagate from
surrounding regions. The magnitude is interannually
and seasonally dependant. The major changes occur in
the tropics north of 5°N, with a more important
barotropic height error variance in summer and
especially in 1996. Depending on the model depth, the
error growth characterizes the local dynamics. We
obtain different error variance features for temperature,
salinity and horizontal velocity. In the area of high
variability (Gulf Stream, Gulf of Mexico, North Brazil
Current, hereafter NBC), 7 days error patterns are
concentrated in the mesoscale structures: one can see the
error variance growing near meanders and strong
current path.

What can be seen after 28 days is that the equator
behaves like a wave guide for the error variance as it is
for the signal (Steger and Carton, 1991). We can clearly
see the eastward propagation of some error structures
along the equator, their reflection of the African coasts
and their westward return between 10°S and 10°N. In
the same way, error patterns due to Mediterranean
outflow near 1000 m spread to the west of the basin. The
NBC and linked eddies make errors grow and carry
them northward along the Brazilian coasts to the
Caribbean Sea. Therefore, the error propagation is
consistent with the related signal.

3.1. Error doubling time

The error doubling time for Ψ, T and S is longer than
28 days, as can be seen on Fig. 3. But, the velocity field
in the northern equator area between the surface and
100 m depth has a different behavior. In this case,
doubling time of error is reached between 15 and
28 days, depending on the period and depth:

- near surface in summer, rms errors can be twice their
initial value after 20 days, instead of 12 or 15 days in
winter;

- at 100 m, doubling time is about 28 days in summer,
but only 17 to 20 days in winter.

The northern tropical region around 10°N is then the
only area where some error variance can develop and
become twice its initial value,mostly in the first 100m.We
have to notice that time scales of the error growth (between
12 to 28 days) are larger than the assimilation window of
the system (7 days). On the other hand, the system also
provides 14 days forecasts. The error on the velocity fields
may be important, especially if it is a winter forecast.

What can be suspected from Fig. 3 is that ensemble
members are not completely initialized. In Etienne and
Dombrowsky (2003) preliminary experiments have
been made to fit and keep into the initial ensemble
only spatial patterns that were consistent with the model
dynamics. But we still found in some case a decrease of
the error SD, showing either a bad estimation of the
initial error variance magnitude or some remaining noise
in the perturbation structures. This can be explained by
the lifting–lowering method, which has not the same
efficiency depending on the area (especially in the
tropics). It means that increment distribution between
barotropic and baroclinic components of the model state
may not be properly ill-built, and introduces structures
that would be dissipated by the model dynamics.

We now compute error statistics described above
(correlation function and error variance in reduced
space) from these results (see Eq. (9)). The following
computation is based on the 28-day ensemble forecast,
despite the fact that we are interested in the 7 days error
statistics for the assimilation. This time period is
necessary for the system to dissipate spatial scales that
could be introduced into the ensemble initialization by
our perturbation method. In the following, only one
experiment is discussed, knowing that the 3 experiment
results are similar.



Fig. 2. Barotropic height standard deviation (in m) of the 7-day ensemble for the 3 experiments.
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Fig. 3. Time series of the spatial mean of the error standard deviation for temperature (°C), salinity (psu), zonal and meridional velocity (m s−1) at
the surface (upper plots) and at 1000 m (lower plots). Red line is W95, green line is S95 and blue line is W96.
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3.2. Error correlation and variance

The most common analytical correlation functions
used in oceanography are performed to represent the
mesoscales (Julian and Thiébaux, 1975; De Mey and
Robinson, 1987). In general, analytical correlations are
computed for stream function (Arhan and Colin de
Verdière, 1985) or from SLA signal (Le Traon et al.,
1991). In our case, the same function has been used for
both SLA statistics in the univariate configuration and in
Fig. 4. Spatial correlation of SLA error inW95 at (0.66°W; 17.7°S) (a) and (31.
multivariate one. But correlation radii have been
recomputed to be consistent with Ψ, T and S statistics.

Ensemble correlation of the SLA state (computed
from Eq. (9)) brings us to both a spatial and temporal
correlation for the initial condition error. We obtain two
major patterns over the domain:

- a positive function, similar to the C function actually
set in the system (Fig. 4a). We mostly find this
correlation function in the northern part of the
33°W; 33.84°N) (b). Temporal distances of 0, 2, 4 and 6 days are plotted.
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domain (north of 50°N), near the equator and at the
southern boundary. We can identify a spatial
(temporal) decrease with distance (time), but the
correlation remains positive.

- A function passing through negative values (Fig. 4b).
It can be found in strong current regions (Gulf
Stream, Azores Current, North Atlantic Current,
tropics, Caribbean Sea and Gulf of Mexico). We still
have a spatial and temporal decrease, but some
negative values are reached for large spatial
distances.

The form of the correlation is a match for the 3
experiments, but correlation length scales seem to
evolve with the period (changes in the dynamics and
so in the anisotropy of the error). One analytic function
exists to describe the negative correlation function
(Arhan and Colin de Verdière, 1985). Hereafter, we call
it Cm (Fig. 5). It has the same structure than previously,
with a time and spatial exponential decrease, but its
magnitude is set by a third degree polynomial (instead of
second degree in C). Whereas C is near 0.55 at the
correlation length scale (r / r0=1 in Fig. 5), Cm is now
equal to zero. For r / r0 between 1 and 3, Cm is negative.
Then it converges to zero by positive value. The
ensemble experiments carried out here show that this
function is well suited to estimate SLA error correlation
in most of domain, especially in dynamical regions.
Hence, we can expect from this result a strong spatial
inhomogeneity of the correction in some regions. Fig. 5
Fig. 5. Spatial part of the C function (solid line) and Cm function (dash
line).
clearly shows that the impact of a data at r0 distance of a
grid point is really poor considering the Cm function,
whereas it is still about 50% considering the C function.
That is why we may find more localized correction in
strong current regions than in the other areas.

Concerning the error variance, it has to be estimated
in the reduce space. That is why each (Ψ, T, S) 28-day
ensemble member has been projected onto the EOFs
base. Then, for each mode, the ensemble spread has
been computed (diagonal part of the ensemble covari-
ance matrix, see Eq. (9)). Fig. 6 shows the logarithm of
the ratio between ensemble and mode variance for mode
1, 2 and 10 obtained for the S95 experiments. In the
actual assimilation scheme, this ratio is taken equal to
0.04 (Eq. (5)). This value corresponds to the white
contour in Fig. 6. This state a proportionality relation-
ship between error variance and signal variance (here in
the reduced space). This hypothesis is commonly used
to estimate error statistics parameters. But, we can see
that this ratio is mostly below 0.04 (logarithm below
−1.39, gray line), except in some area where it can be
greater than 1 (positive values in Fig. 6). This parameter
is then not constant over the domain. This points out that
leading signal EOFs are not similar to dominant error
EOFs for the whole area. Error variance in the Gulf
Stream can be found on mode 2, whereas in the tropics,
the modes of order greater than 7 are prevailing. We can
then conclude that the signal base is not satisfactory to
represent the error statistics. The assumption that the
ratio between signal and error is constant in the reduced
space is then mistaken.

3.3. Discussion

We have just seen that hypothesis made in the
multivariate assimilation scheme of Mercator have to be
questioned. As shown in previous section, ensemble
experiments allow us to estimate error correlation and
variance. Considering optimal interpolation scheme, as
used in MERCATOR (see Eq. (4)) we now access
parameters for error statistics needed in the assimilation
scheme. First, we found that a constant correlation
function over the domain seems to over estimate the
homogeneity of the error structures. Roughly speaking,
we found two kinds of patterns that can be correlated to
bathymetry and dynamics. In region of high variability
(pointed out by larger SD value in Fig. 1), we mostly
find a correlation that becomes negative with increasing
spatial distance. Along most of shelves and northern part
of the domain, correlation function seems to be
consistent with the C function actually parameterized
in the system.



Fig. 6. Log of the ratio between 28-day ensemble variance and mode variance of S95 in the reduced space for mode 1, 2 and 10. White and gray contours correspond to a ratio equal to 1 and 0.04
respectively.
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Second, the reduced space is built to depict the signal
(EOFs). But we have to nearly rearrange these modes to
represent the error. It means, as shown in Fig. 6, that if
we want to keep the existing relationship between signal
and error statistics in the assimilation scheme (error
variance equal to a ratio of the signal variance), we have
to deal with both the spatial specificity of the error and
their real projection onto the signal EOFs. The ratio
between error and signal variance has to be mapped
depending on the area and the mode. This shows that the
error statistics is not so homogeneous as we expect in
our initial scheme.

Two new experiments are now conducted with the
multivariate scheme to consider these new pieces of
information separately. First, we decide to test the
negative correlation function Cm, then a new error
variance with an error/signal ratio computed from an
ensemble experiment.

4. Impact of the correlation function

Two simulations over year 2003 are compared here.
We choose this period because satellite data, in situ
observations and a reference run (hereafter Sref) were
available for the multivariate assimilation scheme.
Notice that Sref is performed using the C correlation
function (Fig. 5). The second experiment called Sm is
performed using the Cm correlation function over the
Fig. 7. First SST (°C) increment for Sref
whole domain and the same correlation length scales as
in Sref. The choice of the initial set of correlation radii
can be questioned. We decided, at first, to estimate new
spatial and temporal correlation radii from the computed
error correlations. But the use of these new parameters
over 2003 did not improve the assimilation and on the
contrary made the forecast worse than the Sref results.
This is due to the fact that the new length scales were
smaller than the reference one. As mentioned previous-
ly, the spatial correlation decrease of Cm is faster than of
C since Cm is equal to zero when C is equal to 0.55
(Fig. 5). Moreover, observations are selected in an
influential bubble around each grid point. The size of
this area in the zonal and meridian directions is twice the
spatial correlation radii (r / r0=2 in Fig. 5). Added to a
reduction of these spatial scales, it leads to very
localized correction introducing strong and unrealistic
gradients in the model.

4.1. Assimilation diagnostics

The first thing to be observed comparing these two
experiments is the strong decrease of the increment
spatial scales (Fig. 7) from Sref to Sm. Whatever the
corrected variable, the influence of the data is reduced.
Fig. 7 shows the example of the SST increment for the
first assimilation cycle, both for the reference and the
new simulation. Influence of the data and thus of the
(on the left) and Sm (on the right).
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correction is now more concentrated around each model
grid point. The SLA assimilation diagnostics are a little
bit better in Sm than in Sref (Fig. 8). The rms of the
difference between model and observations can be
reduced, depending on the satellite, of 0.5 to 1 cm.
Usually, this rms is below 8.5 cm in Sm. The ratio
between rms misfit and rms data is always below 1 and
is smaller in the new simulation compared to the
reference. In other words, the Sm forecast is statistically
closer to SLA data. Of course, this improvement can be
very different from one region to another. The greatest
impact on the assimilation results can be seen in the
Florida Strait, near Puerto Rico (where the misfit can be
reduced by 1.5 cm in summer), the Cape Verde zone,
and generally between 20°N and 20°S. Assimilation
statistics for temperature and salinity (not shown here)
are also better than those of the reference, and
particularly between 100 and 1500 m.

Maps of temperature and salinity increment rms
validate the progress made in regions previously
mentioned. Between 10°S and 20°N, this diagnostic
has decreased of 0.5 °C and almost 0.15 psu at 100 m
Fig. 8. SLA assimilation diagnostics for Sref (solid lines) and Sm (dash lines) o
(orange).
and 0.8 °C and 0.2 psu near 300 m. Great improvements
are also made in the Labrador Sea and in the subtropical
gyre. Moreover, this new simulation shows a global
decrease of all the full state analysis increment, even on
baroclinic and barotropic height. Considering tempera-
ture and salinity, this is obvious in the North Brazilian
Current, in the Caribbean Sea and near the Gulf Stream
overshoot.

4.2. Sm forecast versus climatology

In addition of the benefit of the new correlation
function on the assimilation statistics, we obtain an
improvement of the forecast itself. Temperature and
salinity bias between model and climatology (Reynaud
et al., 1998) is dramatically reduced in the new
simulation. This can be seen all over the domain and
along the whole water column, but especially in the
tropics (see Fig. 9 for temperature at 100 m). The strong
bias of more than 5 °C between 10°N and 20°N (east of
Puerto Rico) and 3 °C near the equator has significantly
decreased. At this level, salinity difference between
ver 2003. Data come from JASON (black), ENVISAT (blue) and GFO



Fig. 9. Mean over 2003 of the difference between model and climatology for temperature (°C) at 100 m. Left (right) plot compare Sref (Sm)
temperature output and climatology.
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model and climatology has fallen below 1.2 psu (instead
of 1.4 psu in the reference). The forecast of the
Mediterranean outflow is also strongly enhanced by
the change in the correlation function (Fig. 10).
Mediterranean water is saltier than in Sref. Most of the
outflow spread to the North along the Portugal coast. In
Sm, this water concentrates in the Cadix area, explaining
the lack of salt between the coast and the Azores.
Moreover, the salinity of the water mass that goes to the
south is now increased.

However, the use of the new correlation function has
strengthen the SST bias already existing in the reference
(0.25 °C over the domain). This bias grows near the
Brazilian coast to the Caribbean Sea and the Gulf
Stream. One explanation is that the SST data use in the
assimilation is a low resolution field (2°×2°). A small
amount of observations is then selected for the
assimilation around each grid point, due to the spatial
reduction of the correlation. It is probably not enough to
constrain the model SST. In spite, bias patterns are
located along the slope where a mask is applied on the
error variance to slightly reduce the correction there (see
M. Benkiran, personal communication).Therefore, in
the Sm simulation, characteristics of the correlation
function just intensify the bias structures already
existing (from 0.5 to 0.8 °C more along the Brazilian
coast or in the Gulf Stream).
4.3. Sm forecast versus in situ data

Sref and Sm simulations are now compared to in situ
data. The first data set to be compared are PIRATA
(Pilot Research moored Array in the Tropical Atlantic)
moorings. They are used inside the assimilation
scheme (no independent data). Nevertheless, they
can reveal information about how the assimilation
acts on the forecast field and if the analysis is
consistent with these observations in the tropical area
(we saw that this region was sensitive to a change in
the correlation function). Ten PIRATA moorings have
been deployed since 1997 in the tropical Atlantic
(Servain, 1996) to study the ocean–atmosphere
interactions in this area using ATLAS (Automated
Temperature Line Acquisition System) line. In the first
500 m, ten temperature measurements are made and
four in salinity between surface and 120 m. Data are
available in real time on the web. The second data sets
to be used are measurements from SVP (Surface
Velocity Program) drogue buoys, launch for the
Global Drifter Program of GOOS (Global Ocean
Observing System). They give current velocity near
15 m depth in the Atlantic Ocean. Trajectories are
collected using ARGOS (Niiler et al., 1995) and
resampled by Kriggeage technique (Hansen and -M.,
1996) every 6 h. Corresponding velocity are computed



Fig. 10. Difference between model and climatology salinity (in psu) at 1000 m for Sref and Sm in the eastern Atlantic.
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at AOML (Atlantic Oceanographic and Meteorological
Laboratory, Miami Florida).

Time series of Sref and Sm model forecast at PIRATA
mooring show a smoother field in Sm which is more
consistent with the observations, due to the reduction of
the weekly gap between forecast and analysis. It makes
sense with the decrease of the analysis increment
observed in the tropical area and in most of the domain.
Sharp events in Sref (thermocline cooling or rise of cold
water) are thus limited in Sm, which is closer to the
observed mooring (Fig. 11). Moreover, major differ-
ences in the temperature and salinity increment magni-
tude are concentrated just below the thermocline and in
the first 400 m (Fig. 11, II). As seen previously, these
depths are more sensitive to the Cm correlation function.
Even if the SST is colder (and too cold) in Sm (Fig. 11, I
a), both compared to observations and Sref (Fig. 11, I b),
the position of thermocline is more realistic. At depth,
some cold events are still over estimated but they are
closer to the observations. These results are quite
accurate for all PIRATA moorings. At this stage, we
have to remind how the analysis is performed in the
Fig. 11. (a): Temperature (°C) time series at PIRATA mooring (35°W; 0°N)
the temperature increment at 0°N; 35°W (PIRATA mooring position) for Sr
mixed layer (for a detailed description, refer to M.
Benkiran, personal communication). In the mixed layer,
pseudo observations are computed. They are equal to the
model forecast, so that the misfits are zero. This means
that we consider that the model is perfect between
surface and mix layer depth to preserve the structure
there. In the meantime, profiles below are taken into
account (with very small weight) for the correction
above and this is why analysis increments are not equal
to zero in the mixed layer. This explains the reason why
there is such a difference below the thermocline between
the two simulations, added to the undersized correction
introduced by the new correlation function.

The new simulation is also able to fit buoy velocity
measurements better than the reference. This compari-
son has been made using an analysis (corrected) velocity
field available the day of the measurements and
interpolated at the buoy's position. Correlation along
the instrument trajectory is computed over the 2003
period. Overall, the correlation between observed and
simulated zonal velocity is enhanced in Sm. This is not
very obvious in the meridional field. The tropics
for the PIRATA observations (a), Sref (b) and Sm (c). (b): time series of

ef (left plot) and Sm (right plot) simulations.
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(between 5°S to 5°N), eastern part of the subtropical
gyre and the Caribbean Sea are the areas of great
improvement. Elsewhere (as in the NBC or in the
Mexico Gulf) only the zonal velocity seems to be better
estimated except in the Gulf Stream, where only the
meridional component is improved. We use in these
experiments the same correlation radii and thus the same
directions for the error anisotropy. But doing so, we
probably fail to catch the anisotropy contains in the
ensemble (and the corresponding error covariance).

Thus what is pointed out in this section is the extreme
importance of the choice of the error correlation
function. Introduction of negative correlation (Fig. 5)
into the error statistics structure is a benefit both for the
assimilation results (decrease of the increment rms and
mean value) and for the forecast itself (closer to
observation and climatology) mostly because of the
located increment it produces. As expected, most of the
regions identified in the previous section as Cm regions
are strongly improved in the new simulation. The only
point is the small SST bias that developed in Sm.

5. Impact of the ensemble error variance

From the results obtained with the 28 days error
statistics (Fig. 6), we have tried to find a way to better
estimate the reduced order error variance to run a new
simulation over 2003. As the system uses seasonal
EOFs and corresponding variances, we first estimate
new ensemble to deal with the seasonal variation of the
error growth, as explained previously. The four experi-
ments are performed as describe in Section 2.3. Xa(t0) of
Eq. (8) is now taken from the reference at the beginning
of January, April, July and October 2003 to catch the
seasonal variation of the error growth. The initial
perturbation fields A={εp}, p∈ [1,50] are the same in
the four experiments. The 7-day ensembles are then use
to compute error variance in the reduced space by
projection onto corresponding seasonal EOFs. This new
set of error variance is introduced in a new experiment
over 2003 called Sv. To clearly identify the impact of the
new statistics, the correlation function is equal to the C
function in both Sv and Sref experiments. The 0.2 ratio
of Eq. (5) is just replaced by the ratio between (m) (the
ensemble SD on mode m) and V1 / 2(m) (Fig. 6). To
avoid strong amplitude in the correction (and sharp
increment gradient that could create numerical pro-
blems), the ratio is limited to 1. In this case, D(m) is
equal to the ensemble variance of the mode divided by
the total variance of the signal (Eq. (5)). The new
simulation, called Sv, is performed using this new
seasonal set of error variance and is compared to Sref.
5.1. The new error variance

As seen in Section 3.2, patterns of the error variance,
when obtained by ensemble experiments, are quite
different from the signal variance. The error variance
has both a new spatial repartition of its amplitude and a
new distribution on the mode. On Fig. 12 the winter
error SD for mode 1 and 5 of Sref (normalised EOFs SD)
and Sv are shown. Whatever the mode, spatial repartition
in the Sref set is smoother compared to what we obtain in
Sv. Amplitude of the Sv error SD can reach 0.9, whereas
in Sref it is limited, by definition, to 0.2 (normalisation of
the error covariance matrix). Here, only the winter error
SD is shown. But except for the amplitude, the spatial
repartition and the mode distribution are similar in the
other seasonal EOFs.

Strong differences appear between error variances of
the two experiments. Considering the first mode in Sref,
the amplitude is near 0.18–0.19 in most of the major
currents of the northern hemisphere. We can see it is not
the case in Sv, where mode 1 is also prevailing in the
northern basin but mostly on the western side. Most of
all, amplitude is reaching more than 0.6 in the subpolar
gyre and in the western side of the subtropical gyre.
Another important difference on the first mode can be
seen between equator and 10°N. Whereas the error SD is
about 0.09 in Sref, it can be more than 0.2 in Sv.

Generally in this new simulation, the higher the order
of the EOFs, the more southern is the error SD
maximum. Modes from 4 to 10 represent error statistics
between 10°N and 20°N and south of 10°S. Modes from
1 to 4 are dominant off the European coast, in the Gulf of
Mexico. The Cape Verde area is represented by mode
from 3 to 5.

Magnitude and spatial distribution of the error
variance in the reduced space is completely reviewed.
Therefore, we may obtain a new repartition of the
correction between barotropic and baroclinic compo-
nents depending on the area.

5.2. Assimilation diagnostics

SLA assimilation diagnostics of this new simulation
are better than those of the reference. They are almost
similar to those of the Sm simulation, and the same kind
of improvement can be seen. But, in some region as east
Puerto Rico and near Dakar differences between model
and observations are less weaker in Sv than in Sm.
Except in the Irminger Sea and near Iceland, T and S
vertical misfit are also reduced, with global improve-
ment of the increment statistics. This is also the case
compared to Sm. T and S mean increments are



Fig. 12. Error standard deviation of winter period used in Sref (upper plots) and Sv (lower plots) for mode 1 (right plots) and mode 6 (left plots).
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considerably reduced below 100 m. Fig. 13 shows some
T and S SD increments of Sm and Sv at 100 m and
300 m. Major improvements brought by the new error
variance can be seen in the tropics and the Gulf Stream.
Region east of Puerto Rico (already identified as a
sensitive area) and the Caribean Sea, have seen the T
and S increment statistics strongly reduced in Sv, with
for example, about 0.5 psu and more than 0.5 °C
discrepancy between the two. Except for the Labrador
Sea, this difference is maximum below 100 m.



Fig. 13. Increment standard deviation of salinity (psu) at 100 m (upper plots) and temperature (°C) at 300 m (lower plots) for the Sm and the Sv
simulations.
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Overall, the impact of the new error variance on
assimilation diagnostics is prevailing in the tropics
between 20°N and 10°S. Error variance in this region is
mostly expressed on high order modes (between 4 and
10). The Sref parameterization is obviously not able to
vertically constrain the model in the tropics mostly
because of the wrong representation of the error on the
reduced space. Using the signal EOFs to express the



Fig. 14. Correlation between drifter and model analysis velocity components for the reference (left plots) and Sv (right plots).
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error is promising, assuming the ratio between signal and
error decomposition as a function of the grid point and
the mode. In other word, it has to depend on the local
dynamics.

The question is which EOFS is dominant for the error
on the signal decomposition? Ten EOFs are enough to
reconstruct more than 90% of the signal variance. We
assume a constant ratio (as in Sref) between error and
signal variances. But we have demonstrated that
dominant signal EOFs are not dominant for the error.
Truncation of the reduced space to ten modes probably
fails to register an important part of the error variance
contained on the neglected part of the signal decompo-
sition. Ensemble experiments allow the computation of
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a multivariate error subspace fully determining the error.
Using the same technique (diagonalisation of the
covariance matrix) we can find some orthogonal vectors
and corresponding eigenvalue to decompose the error.
This has been done, but it has been unsuccessful in
improving the assimilation results. Assimilation diag-
nostics, both for SLA and in situ data, were worse than
the reference.

5.3. Sv forecast versus climatology and in situ observations

As in the previous Sm experiment, we found a SST
bias in Sv (no more than 0.25 °C), whereas on the
vertical, the difference between Sv and climatology is
strongly reduced compare to the Sm minus the
climatology. One exception is the equator near 100 m
depth for T and S fields, where a bias remains. Once
again, the SST bias structures grows near the continental
slope, but this time spatial scales of the correlation are
not involved. By projection of surface fields onto the
multivariate (Ψ, SST, SSS) EOFs, we see that the SST is
expressed mostly on mode of order greater than 6. But
this is also modes for which the error variance decreases
on the west continental slope compared to the reference
(Fig. 12). This is a reason for the small increase of the
SST bias in this area.

At Gibraltar strait near 1000m, salinity bias has mostly
disappeared. There only remains a difference between
model and climatology of about 0.2 psu (0.4 psu in Sm and
0.5 psu in Sref). Mediterranean outflow seems to be better
estimated in this new configuration, than it was previously.
Moreover the temperature bias has totally disappeared at
Gibraltar outflow and in the Azores.

The mean increment amplitudes are reduced in Sv,
compared to Sm, except near the Amazon outflow (along
the Brazilian coast between 5°S and 5°N). In this area,
temperature increments increase in the new simulation
just below the thermocline (around 100 m) and near
400 m. But at the same time, standard deviation of this
increment is falling and bias is kept unchanged.
Moreover, model temperature at PIRATA mooring
positions is particularly consistent with the observation
south of the equator (moorings near 10°S and 6°S). In
this area, position and gradient of the thermocline is
closer to what is observed. North of the equator,
improvement can essentially be found above the
thermocline. Thus even if the assimilation statistics
seem to give better results in Sv than in Sm, the equator
area remains a particular region that still causes problem
for the model and the assimilation.

Considering now the drifter measurements, we can
see that Sv velocities are now more consistent with SVP
measurements than what can be found in the reference
(Fig. 14). Correlation is increased by 7% for U (zonal
direction) and 9% for V (meridional direction). It is
obvious in the equatorial and in the north tropical areas
(Guinea Gulf, NBC). The meridional velocity in the
Gulf Stream seems to be more consistent with the drifter,
on the opposite of U. Velocity is also better estimated in
the Sargasso Sea and globally in all the subtropical and
subpolar gyres.

6. Conclusion

The major problem of the assimilation scheme still
consists in the choice of the error statistics, such as guess
error covariance matrix B. In the MERCATOR
multivariate configuration studied in this paper, optimal
interpolation is used to compute B (Eq. (5)), by separate
parameterization of the magnitude (variance) and the
spatial and temporal structure (C function). Moreover,
correction to the forecast is performed in a subspace of
the model state by projection on the ten first EOFs of the
(Ψ, T, S) signal. We assume in Eq. (5) a constant ratio
between error and signal standard deviation, which
means similar spatial and vertical patterns. Moreover,
the correlation function stating the spatial and temporal
structure of the B matrix is similar on each ten
dimension of the reduced space. Hence, barotropic
mode (first EOF) and baroclinic component of the guess
error covariance are supposed to have the same
correlation patterns. This paper aims to assess these
assumptions by use of ensemble methods. Knowing a
priori information on the error statistics, we perform an
ensemble of model initial conditions by random choice
of possible states that reconstruct the expected density
probability function (cloud of points around the true
state). This ensemble is then integrated by the model.
Thus we can access the error statistics at every time step
and evaluate the time propagation of the error growth.

Ensemble results show that length scale used to
compute the covariance matrix are too large and that in
some area the correlation can reach negative values.
Moreover, the relation between error and signal standard
deviation after decomposition on the signal subspace is
not as simple as set initially in the assimilation scheme.
The ratio between these two parameters has spatial pat-
terns, depending on the area and the mode (dimension of
the reduced space). Hence, decomposition of the (Ψ, T,
S) signal and decomposition of the guess error using
EOF techniques seem to be different while dominant
EOFs for the model state are not corresponding to
dominant error patterns. Parameters chosen in the
assimilation scheme suppose that the error statistics
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are quite homogeneous over the domain and the reduced
space dimensions. But, we show here that a localized
correction gives better results both in the assimilation
diagnostics and in the model forecast. This is obvious in
the tropics where some T and S bias have been drama-
tically reduced. Thus the optimal interpolation assump-
tion of Eq. (5) can be improved by a better estimation of
the error variance and correlation function.

We could think that results could be even better by
combining ensemble estimated error variance and corre-
lation function. But further experiments didn't provide
any confirmation. We can suppose that the correlation
function depends on the mode, as the variance does. This
can be supported by the strong correlation between error
growth and dynamics (Moore, 1999). Knowing that mode
1 (barotropic mode) represents the large scale and the
steric effect and that the mesoscale signal is present on the
other modes, we can suppose that the first mode has to be
treated separately in term of parameterization.

So, we have shown that ensemble experiments are able
to bring reliable information on guess error statistics. The
best results have been obtained using the ensemble forecast
on the reduced space to estimate the guess error variance
(Section 5). But this information is complex and has to be
investigated further. Moreover, these statistics have
interannual and probably seasonal patterns (Section 3).
Longer assimilation experiments extended over 2004
show that error parameters estimated over 2003 are not
as consistent with 2004 dynamics as we were expecting.
So, even if these results are promising, longer experiments
have to be performed to compute error statistics that can be
used in any situation.
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